The gravitational-wave memory effect

نویسندگان

  • Marc Favata
  • M Favata
چکیده

The nonlinear memory effect is a slowly growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitationalwave interferometer a gravitational wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including (1) computations of the memory contribution to the inspiral waveform amplitude (thus completing the waveform to third post-Newtonian order); (2) the first calculations of the nonlinear memory that include all phases of binary black hole coalescence (inspiral, merger, ringdown); and (3) realistic estimates of the detectability of the memory with LISA. PACS numbers: 04.25.Nx, 04.30.Db, 04.30.Tv, 95.30.Sf (Some figures in this article are in colour only in the electronic version)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Gravitational-wave Memory from Binary Black Hole Mergers

Some astrophysical sources of gravitational-waves can produce a “memory effect,” which causes a permanent displacement of the test masses in a freely-falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensor’s contribution to the distant gravitational-wave field. This nonlinea...

متن کامل

Gravitational-wave memory revisited: memory from the merger and recoil of binary black holes

Gravitational-wave memory refers to the permanent displacement of the test masses in an idealized (freely-falling) gravitational-wave interferometer. Inspiraling binaries produce a particularly interesting form of memory—the Christodoulou memory. Although it originates from nonlinear interactions at 2.5 post-Newtonian order, the Christodoulou memory affects the gravitational-wave amplitude at l...

متن کامل

The sky pattern of the linearized gravitational memory effect

The gravitational memory effect leads to a net displacement in the relative positions of test particles. This memory is related to the change in the strain of the gravitational radiation field between infinite past and infinite future retarded times. There are three known sources of the memory effect: (i) the loss of energy to future null infinity by massless fields or particles, (ii) the eject...

متن کامل

The gravitational-wave memory from eccentric binaries

The nonlinear gravitational-wave memory causes a time-varying but nonoscillatory correction to the gravitational-wave polarizations. It arises from gravitational-waves that are sourced by gravitationalwaves. Previous considerations of the nonlinear memory effect have focused on quasicircular binaries. Here I consider the nonlinear memory from Newtonian orbits with arbitrary eccentricity. Expres...

متن کامل

Post-Newtonian corrections to the gravitational-wave memory for quasicircular, inspiralling compact binaries

The Christodoulou memory is a nonlinear contribution to the gravitational-wave field that is sourced by the gravitational-wave stress-energy tensor. For quasicircular, inspiralling binaries, the Christodoulou memory produces a growing, nonoscillatory change in the gravitational-wave ‘‘plus’’ polarization, resulting in the permanent displacement of a pair of freely-falling test masses after the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010